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1. INTRODUCTION

Let Xbe a real or complex Banach space with norm II'I!, and let <reX) be the
Banach algebra of endomorphisms of X. Let {T(t); t ;:;:, O} be a semi-group of
operators of class (Co) in <reX), with infinitesimal generator A. For all ,\ with
Re.\>wo=limH",(ljt)logIIT(t)ll, the resolvent of A is given by R(iI.;A)f=
So e-At T(t)fdt. One says that {T(t)} is equi-bounded, ifIIT(t)!1 < M (0 < t < 00),
and holomorphic, if T(t) [X] s; D(A) (for all t > 0) and IIAT(t)11 = O(t-I)
(t -? 0+). For all these concepts see, e.g., E. Hille andR. S. Phillips [7, Chapters
X-XII], and P. L. Butzer and H. Berens [2, Chapter I].

There are a number of well-known perturbation theorems for semi-groups.
These can be divided essentially into two different types.

If A is the infinitesimal generator of a semi-group {T(t)}, then one type is
concerned, roughly, with conditions upon an operator B, in order that the
sum A + B (or the closure of A + B) be likewise, the infinitesimal generator of
a semi-group. For theorems of this type we refer to, e.g., K.E. Gustafson [5],
E. Hille and R. S. Phillips [7, Chapter XIII], T. Kato [8, Chapter IX], V. V.
Kucerenko [9], I. Miyadera [10], H. F. Trotter [11] and K. Yosida [13]. Some
of these theorems are also given for holomorphic semi-groups.

Theorems of the other type state under which conditions upon B the multi­
plicative perturbation BA likewise generates a semi-group; for these, see,
e.g., J. R. Dorroh [4], K. E. Gustafson [6] and C. F. Widger [12].

On the other hand, approximation theorems for semi-groups of operators
have been studied under various points of view; see P. L. Butzer and H.
Berens [2]. A particular case of one of the basic results is [2, pp. 88-90]:

Let {T(t)} be of class (Co) and X reflexive. Then the following assertions are
equivalent:

(i) IIT(t)f - fll = OCt)

(ii) f E D(A).

(t -;. 0+),

1 Corollary 1 answers a question raised by the audience in a colloquium lecture held by
the first-named author at Harvard University on November 10, 1966. Part of the results were
presented by the second-named author in a talk at the VIIth Austrian Mathematical
Congress, Linz, on September 19, 1968.
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IfIIT(t)1 - III = o(t) (t --+ 0+), then T(t)/=llor all t;> 0, whether or not X is
reflexive.

The object of this note is to compare the approximation by a perturbed
semi-group {T'(t)} with that by the unperturbed semi-group {T(t)}. More
specifically, the order of magnitude of IIT'(t)1 - III as a function of t, is to be
compared with that of IIT(t)1 - III. The problem will actually be treated in the
setting of the theory ofintermediate spaces. A similar question is raised for the
resolvent operator AR(A;A) as a function of.\, for.\ --+ 00.

2. INVARIANCE THEOREMS

In case ofan equi-bounded semi-group ofclass (Co), we introduce the follow­
ing subspaces of X (cf. P. L. Butzer and H. Berens [2, Chapter III):

r{Jro dt }

j
l lEX; 0 (rlXll[T(t) - I)'IIDLt < 00

(0 < 0( < r; 1 ~ q < 00),
X",. r;q(T) = 1

I
I {IE X; sup (t-IXII[T(t) - IYIID < oo}

O~t<co .

(O~O(~r;q=oo),

and also

XIX,r;q(T) =

r{IE X; J: (tr-<XIlArT(t)/IDq~~< oo}

(0 < 0( < r; 1 ~ q < 00),

{
IE X; sup (t'-IX[[ArT(t)/11) < oo}

O<;t<",

(0 ~ 0( ~ r; q = 00)

if {T(t)} is holomorphic (r being any fixed positive integer). Our main therorem
reads as follows.

THEOREM 1. Let {T(t)} and {T'(t)} be any two equi-bounded semi-groups 01
class (Co). If D(Ar) ~ D(Atr

), then lEX"" rjT) implies f E X rx•r;q(T'). If
{T(t)} and {T'(t)} are, in addition, holomorphic, thenI belongs to grx, r;q(T') ifit
belongs to XIX. r;q(T).

Remark. This theorem is rather general, since we need not distinguish one
semi-group as perturbed and the other as unperturbed, and no hypothesis
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concerning A and A' is made, other than D(Ar) £; D(A'r). The latter condition
is, for instance, satisfied, in case of both types of perturbation theorems cited
in the introduction.

Proof Since AI' and A'r are closed operators, the closed-graph theorem
yields that A'r is relatively bounded with respect to Ar, Le., there exists a
constant C> 0 such that for allf E D(Ar),

IIA,rfil <. c[llfll + liArfill.
With the notation IlfIID(Ar) = Ilfll + IIAtl1 (similarly for D(A"», it follows that
for allfE D(Ar),

IlfiID(A,r) <. (C + 1) IlfIID(Ar). (*)

(t --+ 0+; 0 < a <. 1).

Next we consider for 0 < t < 00 and every f E X, the function norms (P. L.
Butzer and H. Berens [2, pp. 166 tr.]).

K(t,!) = K(t,!; X, D(Ar») = inf (11flll + t ilf21ID(Ar»)
f~f1+f2

and K'(t,f) = K(t,f; X, D(A'r). By (*), these satisfy the inequality K'(t,f) <.
(C + l)K(t,f) (0 < t < (0). Thus,

(X, D(A'r)e, q;K £; (X, D(Ar)e, q;K'

where

(X, D(Ar»e, q;K = {iE X; J: [t-e K(t,f)]q~t < +oo}
(0 < e< 1, 1 <. q < 00 and/or 0 <. e<. 1, q = (0).

These spaces are intermediate spaces of X and D(Ar) under the obvious norm,
i.e., Banach spaces with the property D(Ar) s; (X, D(Ar»e, q;K S; X. Using the
basic equivalence theorem, stating that the spaces X"" r;q{T) are equal to the
spaces (X, D(Ar»",/r. q;K (0 < a < r, 1 <. q <. OO,r = 1,2, ...) and that X" r;,,,(T) is
equal to the space (X, D(Ar)I, oo;K (see P. L. Butzer and H. Berens [2, pp. 192­
193]), we conclude the first part of the theorem.

Concerning the holomorphic case, the basic result (see P. L. Butzer and
H. Berens [2, pp. 207 tr.]) that the spaces X"" r;iT) are equal to the spaces
x"" r; iT) (0 < a < r, 1 <. q <. 00 and/or a = r, q= (0) yields the second part.

Let us now consider the case q = 00, r = 1 of Theorem 1. Since, by a simple
transformation, each semi-group can be made equi-bounded while remaining
in the same class, we obtain

COROLLARY 1. Let {T(t)} and {T'(t)} be any two semi-groups of class (Co)
such that D(A) = D(A'). For f E X, the following are equivalent:

(i) IIT(t)f - fll = O(t"'),

(ii) 11T'(t)f- fll = O(t"')
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If, in addition, both semi-groups are holomorphic, then (i) and (ii) are also
equivalent to

(iii) IIAT(t)fll = O(tIX-l),

(iv) IIA'T'(t)fll = 0(t IX- 1) (t -+ 0+; 0 < 0( < 1).

We note that one can also prove the corollary without using the theory of
intermediate spaces, by employing the classical perturbation theorems given
in E. Hille and R. S. Phillips [7; Theorems 13.4.1, Cor. I and 13.7.1].

Next, considering the resolvent operator, we have:

THEOREM 2. Let {T(t)} and {T'(t)} be any two equi-bounded semi-groups of
class (Co). If D(A) <;: D(A'), then 11[.\R(.\;A)f-f]11 = O(.\-IX) for fE X,
0< 0( < 1, implies 11[.\R(.\;A')f- f]11 = O(.\-IX) (.\ -+ 00).

The proof follows from Theorem 1 and the following one, due to H. Berens
[1, Chapter 4]: Under the hypothesis of Theorem 2, IIT(t)f - fll = O(tIX)
(t -+ 0+) for 0 < 0( < 1, if and only if II.\R(.\;A)f - fll = 0(.\-«)(.\ -+ 00).

Concerning results in which the O-condition is replaced by an o-condition,
let us point out that such may be established, when further restrictions are
imposed upon A as well as on A'. Finally, we emphasize that our results allow
many applications, in particular to the initial-value behaviour of solutions of
abstract Cauchy-problems. These applications as well as further results, will
be published in another paper.
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